US009143793B2

a2 United States Patent

Steinberg et al.

US 9,143,793 B2
Sep. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

VIDEO PROCESSING SYSTEM, COMPUTER
PROGRAM PRODUCT AND METHOD FOR
MANAGING A TRANSFER OF
INFORMATION BETWEEN A MEMORY UNIT
AND A DECODER

Inventors: Erez Steinberg, Tel Aviv (IL); Moshe
Nakash, Or Yehuda (IL); Yehuda
Yitschak, Magen Shaul (IL)

Freescale Semiconductor, Inc., Austin,
TX (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 858 days.

Appl. No.: 12/788,386

Filed: May 27, 2010

Prior Publication Data

US 2011/0293009 A1 Dec. 1, 2011

Int. Cl1.
HO4N 728
HO4N 7/50
HO4N 19/423
HO4N 19/46
HO4N 19/51

(2006.01)
(2006.01)
(2014.01)
(2014.01)
(2014.01)

(Continued)

U.S. CL
CPC

HO4N 19/423 (2014.11); HO4N 19/44
(2014.11); HO4N 19/46 (2014.11); HO4N 19/51
(2014.11); HO4N 19/513 (2014.11); HO4N
19/60 (2014.11)

Field of Classification Search

CPC HO4N 5/144; HO4N 7/03; HO4N 7/28;
HO4N 7/30; GO6K 9/002; GOGF 17/14
USPC 375/240.11, 240.13, 240.16, 240.2,

375/240.1, 240.08, 240.12, 240.6;
348/222.1,725/81
See application file for complete search history.

@y 1ME e
111(1) . ",
N

@A 00| °

113) -1
8o |oeTo0

111(9)
mao—| o [E | o | o
1111
~ F|e|[o]o

102y 11101s)

111(18) 111(21) 1122y

11(17)
e H 0 0

111
]

0 0 0 |

1120y 111(2})

111013

(56) References Cited
U.S. PATENT DOCUMENTS

6,275,531 BL*
6,529,554 Bl

8/2001 Li
3/2003 Craver

(Continued)

375/240.12

FOREIGN PATENT DOCUMENTS
WO 2011005105 Al

OTHER PUBLICATIONS

1/2011

European Search Report mailed Aug. 3, 2011 in Application
EP11167377.8-2223.

(Continued)

Primary Examiner —Y Lee
Assistant Examiner — Salame Amr

(57) ABSTRACT

Video processing system, computer program product and
method for managing an exchange of information between a
memory unit and a decoder, the method includes: (a) retriev-
ing, from the memory unit, a first non-zero data structure that
comprises only non-zero first transform coefficient groups;
wherein first transform coefficient groups are associated with
a first quality level; (b) retrieving, from the memory unit,
second layer information; (¢) processing, by the video
decoder, the second layer information and the first non-zero
data structure to provide second transform coefficient groups;
(c) generating, by the video decoder, a second non-zero data
structure that comprises only non-zero second transform
coefficient groups; wherein the second non-zero data struc-
ture is associated with a second quality level that is higher
than the first quality level; (d) generating second non-zero
indicators that are indicative of non-zero transform coeffi-
cient groups, wherein the second non-zero data structure is
associated with a second quality level that is higher than the
first quality level; and (e) writing to the memory unit the
second non-zero indicators.

19 Claims, 5 Drawing Sheets

11(8) EM(1,1)
J 1

R
11(14)

%

-,
111(16)
TC(1,1) 11

S
-

111(24)

y o lnan

[elofele]e[e]o]o[o]o]e

[[Jofe]Jofe] o]]

y NZD(1,1) 311

[2[e]e]e[e]eo[+] [o]o[e]

ofo]ofofofo[o[o[o]e]

US 9,143,793 B2

Page 2
(51) Int.ClL 2007/0040711 Al 2/2007 Ziauddin
04N 19/513 2014.01 2008/0013622 Al* 1/2008 Baoetal.c.......... 375/240.1
HO4N 19/60 (2014 01) 2008/0046698 Al 2/2008 Ahuja et al.
(01) 2008/0144723 Al* 6/2008 Chenetal. 375/240.26
HO4N 19/44 (2014.01) 2008/0317378 Al* 12/2008 Steinbergetal. 382/275
2009/0122867 Al* 5/2009 Mauchly et al. 375/240.16
(56) References Cited 2009/0225844 Al 9/2009 Winger
2010/0020874 Al 1/2010 Shin et al.
U.S. PATENT DOCUMENTS 2010/0290520 Al* 11/2010 Kamisli et al. 375/240.2
2011/0080945 Al* 4/2011 Thangetal. .. . 375/240.02
7,472,151 B2 12/2008 Schumann 2011/0080947 Al* 4/2011 Chenetal. 375/240.12
7,525,456 B2 4/2009 Watanabe OTHER PUBLICATIONS

7,535,387 Bl 5/2009 Delva
2003/0156652 Al* 8/2003 Wiseetal. 375/240.26

2004/0028131 Al* 2/2004 Yeetal. ... 375/240.11
2004/0240559 Al 12/2004 Prakasam et al.

2005/0046702 Al* 3/2005 Katayamaetal. ... 348/222.1
2005/0259747 Al 11/2005 Schumann

2006/0078049 Al* 4/2006 Baoetal. ... 375/240.11
2006/0095943 Al* 5/2006 Demircinetal. 725/81
2006/0153294 Al* 7/2006 Wangetal. 375/240.08

2006/0165181 Al* 7/2006 Kwan et al. 375/240.24
2006/0171463 Al* 82006 Hanamura etal. .. 375/240.13
2007/0025447 Al* 2/2007 Kojokaro etal. 375/240.24

Heiko Schwartz, Detlev Marpe, “Overview of the scalable video
coding extension of the H.264/AVC standard”. IEEE Transactions on
circuits and systems for video technology, vol. 17, No. 9, Sep. 2007.
Detlev Marpe, Heiko Schwartz, “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard”.
IEEE Transactions on circuits and systems for video technology, vol.
13, No. 7, Jul. 2003.

* cited by examiner

U.S. Patent Sep. 22, 2015 Sheet 1 of 5 US 9,143,793 B2

111(5
111(2) \\() 111(6)
111(1) \ : \
Ny
1@ L A0 0] C | e EM(JJ)
M1@) —— T—1 !
111(9)
110y~ o [E | o | o |14
111(11) = 4111013
\\
| F |G |o]| o] -
N T 111(16)
111(12) 111(15) TC(1,1) 111
111(18) 111(21) 111(22 J
111(17) \ 1z2) -
4 o | H | o] o0
111(19
~] o o | o | 111024
7
1M120) 4114023

y NZD(1,1) 311

A|B|C|ID|E|JF|G|H}I|O]|O|[O|0]0|0]0]|0O|0]0]0]0]0

FIG. 1

U.S. Patent Sep. 22, 2015 Sheet 2 of 5 US 9,143,793 B2

A 0 0 C 0 H 0 0
B 0 0 0 0 0 0

D E 0 0 ‘\\
Flael ol o -~ TC(,1) 111

0 J 0 0 | 421(17)-42124) 0 0 0

\‘\

.

-

ol ol ol o ~_ TCI21) 421

421(1)- 421(16)

A J 0 C | 121(17)-121(24)| H 0 0
\\

N
~
~
n

Bl L[O[O o | o | M | N+

D E 0 0 ‘\\

clel ol o v~ TC@1)121

121(1)- 121(16) __~ 111 521

1[{1]0(0|l0jO0j0O|jOOjO|jOJOfjO|OJjOfOJO|OfOJO}|1]|1]1]0O

1111010100100 O0 OO0 11]1]1O0]O11T|O]11111]1
\
= 1(1,1) 221

AlJ|[B+tK|L|C|D|E|F|G|H|M|N+I

NZD(2,1) 321

FIG. 2

U.S. Patent Sep. 22, 2015 Sheet 3 of 5 US 9,143,793 B2

k=1,n=1. 605

v

Fetch EN(1,n). 610 —

Process EN(1.n) to provide TC(1,n). 615

| Extract moti?n vecfor 616 |
Y
Are all motion vectors associated with a set of transfer coefficient groups the same ?,
617

Y

Generating SMV(1,n). 618

v

Complete decoding TC(1,n) ? 620 —

$ Yes

— Complete decoding TC(1,n). 622

Generate NZD(1.n) and I(1,n). 625 <

Write NZD(1,n) and I(1,n). 630
Write NZD(1,n) only if at least one transform coefficient group differs from zero 632

y

— Write SMV(1,n) and (forn > 1) MV(1,n) per TC(1,n). 633

yes

—» process enhancement layer information ? 635

I

no
v
TO STAGE 640, 641 FIG. 3

n=n+1

*2]
-

U.S. Patent Sep. 22, 2015 Sheet 4 of 5 US 9,143,793 B2

FROM STAGE 635

:] Retrieve IGNORE(k+1). 641 fe——
| v

I Ignore information relating to first till kK'th layers 7 642
land EM(k+1,n) 640

no
[Yés +
| | — Process EM(k+1,n) to provide TC(k+1,n). 643 ;J
|_

I Retrieving, from

| the memory unit,
—™ NzZD(k,n), I(n,k) e

' [Fetch I(k.n) and EM(k+1.n) 644

v

| NZD(k,n) is an empty group 7 645

es

|

|

|

| v O y
A | Fetch NZ(k,n) 646

Provide TC(k+1,n). 650

Provide ITC(k+1,n) by processing M(k+1,n). 651

Reconstruct TC(k,n) from NZD(k,n) and I(k,n). 652

TC(k+1,n) = Merger (TC(k.n), ITC(k+1,n)). 653

Extract motion vector 654

Generate SMV(k+1,n). 656

A 4
4>| Complete the decoding process for TC(k+1,n) 7. 660

v
—| Complete the decoding process for TC(k+1,n) 662

Generate (NZD(k+1,n)) and (I(k+1,n)). 670

v All motion vectors the same 7 655
I
I
I
I
I
I
I
I
|
I
I
|

Write NZD(k+1,n) and I(k+1,n), wherein n>1. 680

-J\—t\ﬁ Write SMV(k,n) and (MV(k,n)) per TC(k,n). 681

v

I
I
I
| - Process other subsets of the (k+1)'th layer video stream ? 685
|
I
I
I

n=n+1
yes

'J
| Increasing q+uality ? 687 FW-END
Yes

e —— - K=k+1 688 |

600 FIG. 4

U.S. Patent Sep. 22, 2015 Sheet 5 of 5 US 9,143,793 B2
Data transfer unit 830 Controller 840
A A
Input/output 890
A 4 Y
TC(n,k) I(n,k) NZD(n,k)
188 288 388 821 822 823
TCl(n,k) fi(n,k SMV(n,k 820(1)
488 é88) 91(0) 820(2) 820(3)
S 901 MU 902 Ignore (k) 820(4) 820(5) 820(6)
888
: Second .
First layer layer Third layer 820(7) 820(8) 820(9)
10 30
20
Memory Unit K'th layer Decoder 820(10)
810 40 820
821 Second transform coefficient groups generator
822 Second non-zero data structure generator
823 Second non-zero indicators generator
820(1) First layer processor
820(2) Motion vector extractor
820(3) Decoder controller
820(4) Single motion vector indicator generator
820(5) First layer non-zero data structure generator
820(6) First layer non-zero identifier generator
820(7) Transform coefficient group generator
820(8) Intermediate set generator _FIG 5

820(9) Reconstruction module

820(10) Merge unit

US 9,143,793 B2

1

VIDEO PROCESSING SYSTEM, COMPUTER
PROGRAM PRODUCT AND METHOD FOR
MANAGING A TRANSFER OF
INFORMATION BETWEEN A MEMORY UNIT
AND A DECODER

FIELD OF THE INVENTION

This invention relates to a video processing system, a com-
puter program product and a method for managing a transfer
of information between a memory unit and a decoder.

BACKGROUND OF THE INVENTION

The Scalable Video Coding (SVC) amendment to the
H.264 recommendation (H.264 SVC) of ITU-T describes a
scalable video stream decoder which is used to decode a
subset of a bit stream in order to adapt it to the various needs
or preferences of end users as well as to varying terminal
capabilities or network conditions.

The SVC bit stream includes different layers of encoded
video. Each layer includes a large number of images, and each
image includes multiple slices that in turn are partitioned to
macroblocks. The base layer is referred to as a first layer and
is a valid H.264 AVC video stream. Additional layers are
referred to as enhancement layer and provide higher quality
or resolution levels or higher frame rates. Allowable sizes of
a macroblock are defined in the H.264 SVC. For example, a
macroblock may include 16x16 Luma samples and 16x8
Chroma samples. Such a macroblock is encoded to provide
AN encoded macroblock.

The decoding process includes multiple stages. It may
include receiving a bit stream, performing entropy decoding,
up-sampling and de-blocking, as well as other operations.
The entropy decoding may include generating transform
coefficients and then using the transform coefficients to
reconstruct images. These transform coefficients are also
referred to as residuals because they represent a difference
between currently decoded information and previously
decoded information.

For example, the encoded macroblock is decoded to pro-
vide a macroblock. During the decoding process an encoded
macroblock is converted (during an encoding process) to
16x16 Luma transform coefficients and 16x8 Chroma coef-
ficients, arranged in 4x4 Luma transform coefficient groups
and 4x2 Chroma transform coefficient groups. Each of these
transform coefficient groups has its own motion vector (not
shown). Each transform coefficient may be 2 bytes long.

The decoding process of a scalable video includes a large
number of accesses to a memory unit, as the amount of
information per each video image may exceed 2 Mega Bits.

These accesses are time and resource consuming, espe-
cially when the information is stored in a memory unit that is
not an integral part of the decoder integrated circuit.

SUMMARY OF THE INVENTION

The present invention provides a video processing system,
a computer program product and a method for managing a
transfer of information between a memory unit and a decoder
as described in the accompanying claims.

Specific embodiments of the invention are set forth in the
dependent claims.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinafter.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and embodiments of the invention
will be described, by way of example only, with reference to
the drawings. In the drawings, like reference numbers are
used to identify like or functionally similar elements. Ele-
ments in the figures are illustrated for simplicity and clarity
and have not necessarily been drawn to scale.

FIG. 1 schematically shows an example of an embodiment
of data structures;

FIG. 2 schematically shows an example of an embodiment
of data structures;

FIGS. 3 and 4 schematically shows an example of an
embodiment of a method; and

FIG. 5 schematically shows an example of an embodiment
of'a video processing system.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Because the illustrated embodiments of the present inven-
tion may for the most part, be implemented using electronic
components and circuits known to those skilled in the art,
details will not be explained in any greater extent than that
considered necessary, for the understanding and appreciation
of the underlying concepts of the present invention and in
order not to obfuscate or distract from the teachings of the
present invention.

A video stream may be decoded in various manners and be
transmitted over different communication links or stored in
different memory units. In order to provide a good trade-off
between quality requirements and bandwidth of storage
requirements scalable decoding and encoding schemes were
developed. Quality scalable decoding includes decoding a
base layer (first layer) and multiple enhancement layers (sec-
ond layer, third layer . . . K’th layer) to provide a decoded
video stream ofa desired quality level. The first layer provides
video with the lowest quality level and each enhancement
layer can be made to provide a higher quality level.

Quality scalable decoding may include a large number of
transfer operations between a memory unit and a decoder.

A scalable quality decoding process may include decoding
only the base layer or decoding the base layer and one or more
enhancement layers.

The decoding and encoding processes are usually applied
on fractions of an image that are known as macroblocks. Each
of the base layer and enhancement layer includes multiple
macroblocks.

Inthe following explanation a macroblock based scheme is
provided in which using a macroblock as an example of a type
of'a subset of a video layer, however, those of skill in the art
will appreciate that the methods, systems and computer pro-
gram product may be applied mutatis mutandis on other types
of subsets of a video layer.

The time allocated for transfer of information between a
decoder and a memory unit can be reduced by generating
compact data structures and transferring compact data struc-
tures between the memory unit and the decoder.

Each layer of a scalable video stream is represented by
multiple compact data structures. A decoding process of an
entire video stream (with all its layers) includes multiple
repetitions of compact data structure fetch, update and write
operations. The compactness of the data structures may also
assist in increasing the success of pre-fetch operations
(speculative fetch operations) thus further reducing the traffic
between the decoder and the memory unit.

US 9,143,793 B2

3

The decoding process starts by entropy decoding of
encoded macroblocks of a first layer to generate sets of trans-
form coefficients groups. Compact data structures that repre-
sent the transform coeficients of first layer macroblock can
be sent back to the memory unit and be retrieved when a
corresponding encoded macroblock of a second layer is being
decoded.

If more than a single enhancement layer exists the decod-
ing process may proceed by repetitively fetching data struc-
tures representing a currently decoded enhancement layer
and data structures representing one or more previous
enhancement layers. The decoding process may end when a
target quality level is achieved and the layer corresponding to
the target quality level is decoded.

The decoding process includes generating and exchanging
compact data structures such as: (i) a non-zero data structure
that includes non-zero transform coefficient groups and does
not include zero value transform coefficient groups, and (ii)
non-zero indicators that are indicative of non-zero transform
coefficient groups.

These compact data structures facilitate a reconstruction of
all the transform coefficients of a macroblock and are usually
much smaller than the set of transform coefficient groups.

FIG. 1 schematically shows an example of an embodiment
for a first layer with a first layer first set of transfer coefficient
groups TC(1,1) 111 that includes Luma transfer coefficients
and Chroma transfer coefficients.

TC(1,1) 111 represent a first encoded macroblock EM(1,1)
11 of first layer (denoted 10 in FIG. 4). This first layer may be
a base layer of a lowest quality level.

TC(1,1) 111 includes first layer first set (FLFS) transfer
coefficient groups. In the example twenty four groups are
shown, however depending on the specific encoding scheme
another number of groups may be used. The shown groups
start by sixteen FLFS Luma transfer coefficient groups that
are followed by eight FLFS Chroma transfer coefficient
groups.

The FLFS Luma transfer coefficient groups include 4x4
FLFS Luma transfer coefficients groups 111(1)-111(16),
each including 4 FLFS Luma transfer coefficients. The first,
third, sixth, ninth, tenth, eleventh and twelfth FLFS transfer
coefficient groups (111(1), 111(3), 111(6), 111(9), 120(10),
111(11) and 111(12)) are non-zero FLFS Luma transfer coef-
ficient groups while the other FLFS Luma transfer coefficient
groups (111(2), 111(4), 111(5), 111(7), 111(8), 111(13), 111
(14), 111(15) and 111(16)) are zero value FLFS Luma trans-
fer coefficient groups.

The FLFS Chroma transfer coefficient groups include 4x2
FLFS Chroma transfer coefficients groups 111(17)-111(24),
each including 4 FLFS Chroma transfer coefficients. The
nineteenth and twenty fourth FLFS transfer coefficient
groups (111(18) and 111(24)) are non-zero Chroma transfer
coefficient groups while the other Chroma transfer coefficient
groups (111(17), 111(19), 111(20), 111(21), 120(22), and
111(23)) are zero value Chroma transfer coefficient groups.

A decoder generates TC(1,1) 111 during the entropy
decoding process. Instead of sending the entire TC(1,1) 111
to a memory unit, the decoder generates compact data struc-
tures that are sent to the memory unit and are retrieved when
a corresponding encoded macroblock of the second layer is
decoded. FIG. 1 illustrates two compact data structures 211
and 311 that represent TC(1,1) 111.

These compact data structures include FLFS non-zero
indicators I(1,1) 211 and FLFS non-zero data structure NZD
(1,1) 311.

1(1,1) 211 indicate which transfer coefficients groups of
TC(1,1) 111 are non-zero. Each set bit of I(1,1) 211 is indica-

20

25

30

40

45

55

65

4

tive of a non-zero FLFS transfer coefficient group. FIG. 1
illustrates a bit map that indicates that the first, third, sixth,
ninth, tenth, eleventh, twelfth, nineteenth and twenty fourth
FLFS transfer coefficient groups of TC(1,1) 111 are non-zero
FLFS transfer coefficient groups while other FLFS transfer
coefficient groups are zero value FLFS transfer coefficient
groups.

NZD(1,1) 311 includes an ordered sequence of the non-
zero FLFS transfer coefficient groups—111(1), 111(3), 111
(6),111(9), 120(10), 111(11), 111(12), 111(18) and 111(24),
as represented in FIG. 1 by the letters A-I. It does not include
the zero value first layer first macroblock transfer coefficient
groups. Thus, less data needs to be sent.

FIG. 2 schematically shows a second example of an
embodiment for a second layer of a higher quality level than
the first layer of FIG. 1 with a second layer first set (SLFS) of
intermediate transfer coefficient groups TCI(2,1) 421, of
SLFS transfer coefficient group TC(2,1) 121, of two compact
data structures 221 and 321 that represent a SLFS transfer
coefficient groups set TC(2,1) 121, and of SLFS intermediate
non-zero indicators 11(2,1) 521.

Encoded macroblock EM(2,1) 21 is processed to provide
TCI(2,1) 421.

TCI(2,1) 421, 1(1,1) 211 and NZD(1,1) 311 are processed
to provide TC(2,1) 121. The decoder adds or otherwise
merges TC(1,1) 111 and TCI(2,1) 421 to provide TC(2,1)
121.

TC(2,1) 121 is processed to provide 1(2,1) 221 and NZD
(2,1) 321.

TCI(2,1) 421 includes twenty four SLFS intermediate
transfer coefficient groups, starting by sixteen SLFS interme-
diate Luma transfer coefficient groups that are followed by
eight SLFS intermediate Chroma transfer coefficient groups.
Although, again, it will be appeared that other numbers might
be used.

The SLFS intermediate Luma transfer coefficient groups
121 include 4x4 SLFS intermediate Luma transfer coeffi-
cients groups 121(1)-121(16), each including four SLFS
intermediate Luma transfer coefficients. The second, third
and fourth SLFS intermediate transfer coefficient groups 121
(2),121(3) and 121(4) are non-zero SLFS intermediate Luma
transfer coefficient groups while the other SLFS intermediate
Luma transfer coefficient groups (121(1), and 121(5)-121
(16)) are zero value SLFS intermediate L.uma transfer coef-
ficient groups.

The SLFS intermediate Chroma transfer coefficients 312
include 4x2 SLFS intermediate Chroma transfer coefficients
groups 121(17)-121(24), each including four SLFS interme-
diate Chroma transfer coefficients. The twenty third and
twenty fourth SLFS intermediate transfer coefficient groups
(121(23) and 121(24)) are non-zero SLFS intermediate
Chroma transfer coefficient groups while the other SLFS
intermediate Chroma transfer coefficient groups (121(17)-
121(21)) are zero value SLFS Chroma transfer coefficient
groups.

TC(2,1) 121 includes twenty four SLEFS transfer coefficient
groups, starting by sixteen SLFS Luma transfer coefficient
groups that are followed by eight SLFS Chroma transfer
coefficient groups.

The second SLFS Luma transfer coefficient groups include
4x4 SLFS Luma transfer coefficients groups 121(1)-121(16),
each including four SLFS Luma transfer coefficients. The
first, second, third, fourth, sixth, ninth, tenth, eleventh and
twelfth SLFS transfer coefficient groups (121(1), 121(2), 121
(3), 121(4), 121(6), 121(9), 121(10), 121(11) and 121(12))
are non-zero SLFS Luma transfer coefficient groups while the
other SLFS Luma transfer coefficient groups (121(5), 121(7),

US 9,143,793 B2

5
121(8), 121(13), 121(14), 121(15) and 121(16)) are zero
value SLFS Luma transfer coefficient groups.

The SLFS Chroma transfer coefficient groups include 4x2
SLFS Chroma transfer coefficients groups 121(17)-121(24),
each including four SLFS Chroma transfer coefficients. The
eighteenth, twenty third and twenty fourth SLFS transfer
coefficient groups (121(18), 121(23) and 121(24)) are non-
zero SLFS Chroma transfer coefficient groups while the other
SLFS Chroma transfer coefficient groups (121(17), 121(19)-
121(22)) are zero value SLFS Chroma transfer coefficient
groups.

Assuming that the merger includes adding transform coef-
ficients of different encoded macroblocks that are located at
the same location then table 1 illustrates the merge operation
that generated TCI(2,1). It is noted that the values that are
included in the table are obtained after performing an inverse
transform such as Inverse Discrete Fourier Transform.

TABLE 1

Transform
coefficient
of
TC(2,1)

Transform
coefficient
of
TC(1,1)

Value of
transform
coefficient

Value of Transform Value of
transform coefficient of transform
coefficient TCI(2, 1) coefficient

111(1)
111(2)
111(3)
111(4)
111(5)
111(6)
111(7)
111(8)
111(9)
111(10)
111(11)
111(12)
111(13)
111(14)
111(15)
111(16)
111(17)
111(18)
111(19)
111(11)
111(21)
111(22)
111(23)
111(24)

421(1)
421(2)
421(3)
421(4)
421(5)
421(6)
421(7)
421(8)
421(9)
421(10)
421(11)
421(12)
421(13)
421(14)
421(15)
421(16)
421(17)
421(18)
421(19)
421(11)
421(21)
421(22)
421(23)
421(24)

121(1) A
121(2) i
121(3) B+K
121(4)
121(5)
121(6)
121(7)
121(8)
121(9)
121(10)
121(11)
121(12)
121(13)
121(14)
121(15)
121(16)
121(17)
121(18)
121(19)
121(11)
121(21)
121(22)
121(23)
121(24)

—oocococOomlocococoocoQUHmdoonNnoowWo R
ZEOO0O0000000000000OCCOHR—O
t2ococom@oocococoQHmdoocnotr

Z

Inthe example of FIG. 2, TC(2,1) 121 is represented by two
compact data structures—SLFS non-zero indicators 1(2,1)
211 and SLFS non-zero data structure NZD(2,1) 321.

1(2,1) 211 indicate which SLFS transfer coefficients
groups of TC(2,1) 121 are non-zero. Each set bit of 1(2,1) 211
is indicative of a non-zero SLFS transfer coefficient group.
FIG. 2 illustrates a bit map that indicates that the first, second,
third, fourth, sixth, ninth, tenth, eleventh, twelfth, eighteenth,
twenty third and twenty fourth transfer coefficient groups of
TC(2,1) 121 are non-zero SLFS transfer coefficient groups
while other SLFS transfer coefficient groups of TC(2,1) 121
are zero value SLFS transfer coefficient groups.

NZD(2,1) includes an ordered sequence of non-zero SLFS
transfer coefficient groups—121(1), 121(2), 121(3), 121(4),
121(6), 121(9), 121(10), 121(11), 121(12), 121(18), 121(23)
and 121(24). It does not include zero value second transfer
coefficient groups.

FIG. 2 also illustrates intermediate non-zero indicators
11(2,1) 511 that indicate which SLFS intermediate transfer
coefficients groups of TCI(2,1) 421 are non-zero SLFS trans-
fer coefficient groups.

10

15

20

25

30

35

40

45

50

55

60

65

6

The decoder can send 1(2,1) 221 and NZD(2,1) 321 to a
memory unit. This may occur if these compact data structures
have further use—for example if the decoding process
requires that one or more additional enhancement layers are
decoded. If, for example, the decoding process ends by
decoding the second layer than these compact data structures
can not be generated or not sent to the memory unit.

FIGS. 3 and 4 schematically show an example of an
embodiment of method 600.

Motion vectors are generated during the encoding process.
The encoding process may include generating motion vec-
tors. A motion vector is a two-dimensional vector that is used
for inter prediction that provides an offset from the coordi-
nates in the decoded picture to the coordinates in a reference
picture. Each set of transfer coefficient group has a motion
vector that refers to another (Reference) set of transfer coef-
ficients.

Method 600 may allow a further reduction of the amount of
information that is sent to and stored in the memory unit—by
reducing the number of motion vectors that are written to the
memory unit.

For example, the set of transfer coefficient groups are pro-
cessed after each other. Thus, if all the motion vectors asso-
ciated with a set of transfer coefficient groups are the same
only a single motion vector can be sent to the memory unit and
a single motion vector indicator could be set to indicate that
all the motion vectors associated with a set of transfer coef-
ficient groups are the same.

The decoding process may include generating a single
motion vector data structure. The single motion data structure
may include up to a single motion vector per set of transfer
coefficient groups.

The decoding process may also include generating an addi-
tional motion vector data structure. The additional motion
vector data structure includes the rest of the motion vectors
per each set of transfer coefficient group—that are not
included in the single motion vector data structure.

Method 600 starts, as shown by stage 605 with setting a
layer index k to an initial value such as 1 (k=1) and setting
encoded macroblock index n to an initial value such as 1
(n=1). These initial values correspond to the layer and mac-
roblock to be decoded.

Stage 605 is followed by stage 610 of fetching a first layer
n’th encoded macroblock from a memory unit. During the
decoding process the encoded macroblock is converted to a
decoded macroblock. It is noted that in this example the size
of the encoded macroblock is assumed not known in advance
and stage 610 includes fetching first layer information that is
expected to include at least one encoded macroblock. Stage
610 may include fetching a first layer encoded macroblock, a
portion of the first layer video stream or the entire first layer
video stream. It is assumed, for simplicity of explanation, that
during a first iteration of stage 610 only a first layer first
encoded macroblock is fetched.

Stage 610 is followed by stage 615 of processing, by a
decoder, a first layer n’th encoded macroblock to provide first
layer n’th set of transform coefficient groups TC(1,n).

Stage 615 may also include stage 616 of extracting a
motion vector per each transform coefficient group, stage 617
of determining if all motion vectors associated with a set of
transform coefficient groups are the same an stage 618 of
generating, based on the determination of stage 617, a single
motion vector indicator (SMV(1,n)) indicating whether all
motion vectors associated with TC(1,n) are the same.

Stage 615 is followed by stage 620 of determining whether
to complete the decoding process for TC(1,n) (and jump to

US 9,143,793 B2

7

stage 622) or to continue the decoding process and generate
information that will be required when a processing TC(2,n)
(and jump to stage 625).

Stage 622 includes completing the decoding process for
TC(1,n) and jumping to stage 635.

Stage 625 includes generating a first layer n’th set non-zero
data structure NZD(1,n) and first layer n’th set non-zero
identifiers I(1,n). NZD(1,n) includes only non-zero first layer
n’th set transform coefficient groups and does not include
zero value first layer n’th set transform coefficient groups.
The first layer n’th set transform coefficient groups are asso-
ciated with a first quality level. The first layer n’th set non-
zero indicators are indicative of non-zero first layer n’th set
transform coefficient groups.

Stage 625 is followed by stage 630 of writing to the
memory unit NZD(1,n) and 1(1,n).

The writing of NZD(1,n) to the memory may be condi-
tioned—NZD(1,n) will be written to the memory unit only if
it includes at least one non-zero first layer n’th set transform
coefficient group. This is illustrated by stage 632.

Stage 630 also includes stage 633 of writing to the memory
unit the single motion vector identifier SMV(1,n) and at least
one motion vector (MV(1,n)) per TC(1,n)—according to the
determination of stage 617. Stage 631 may include writing up
to a single motion vector per TC(1,n) to a single motion vector
data structure S and writing multiple motion vectors of TC(1,
n)—if such exist—to a multiple motion vector data structure
MU. The single motion vector indicator SMV(1,n) indicates
whether to fetch a motion vectors from S or MU.

Stage 630 is followed by stage 635 of determining whether
to process other subsets of the first layer video stream,
increasing n by one (n=n+1) and jumping to stage 610, or to
continue the decoding process by processing enhancement
layer information and jumping to stage 641.

Stage 635 may be followed by a stage 640 of retrieving,
from the memory unit, a k’th layer n’th set non-zero data
structure NZD(k,n), a k’th layer n’th set non-zero identifiers
I(n,k) and (k+1)’th layer information such as (k+1)’th layer
n’th encoded macroblock.

In order to further reduce the transfer of data between
layers the retrieval of data from the memory unit the retrieval
of NZD(k,n) and, additionally or alternatively of I(n,k) may
be conditioned, as illustrated by stages 641-646.

Stages 641-646 are alternative stages to stage 640. For
simplicity of explanation, FIG. 4 illustrates both stage 640
and stages 641-646. Stage 640 as well as arrows that are
connected to stage 640 are dashed—to illustrate that stage
640 is an alternative to stage s641-646.

Stage 641 includes retrieving IGNORE(k+1) thatis indica-
tive of whether to ignore information from previous layers.

Stage 641 is followed by stage 642 of determining, based
on the value of IGNORE(k+1) whether to (a) ignore informa-
tion relating to previous layers (base layer till k’th layer) and
jump to stage 643, or (b) not to ignore information relating to
previous layers and jump to stage 644.

Stage 643 includes processing EM(k+1,n) regardless of
k’th layer information to provide TC(k+1,n). This processing
resembles the processing of base layer encoded macroblocks
and may include stage 615. Stage 643 is followed by stage
660.

Stage 644 includes fetching EM(k+1,n) and I(k,n).

Stage 644 is followed by stage 645 of determining whether
NZD(k,n) is an empty group (all k’th layer n’th set transform
coefficient groups are zero). If the answer is positive then
NZD(n,k) is not fetched from the memory unit and stage 644
is followed by stage 643.

10

15

20

25

30

35

40

45

50

55

60

65

8

If NZD(k,n) is not an empty group then stage 645 is fol-
lowed by stage 646 of fetching NZD(k,n). Stage 646 is fol-
lowed by stage 650.

Stage 644 may include fetching SMV(1,k) and either one
motion vector from S or multiple motion vectors from
MU—based on the value of SMV(1,k).

Stage 650 includes processing, by a decoder, the k’th layer
n’th set non-zero data structure (NZD(k,n) the k’th layer n’th
set non-zero identifiers (I(k,n)) and the (k+1)’th layer n’th
encoded macroblock (EM(k+1,n)) to provide (k+1)’th layer
n’th set transform coefficient groups TC(k+1,n).

Stage 650 may include stages 651, 652, 653, 654, 655 and
656.

Stage 651 includes processing M(k+1,n) to provide (k+1)
’th layer n’th set intermediate transform coefficient groups
ITC(k+1,n).

Stage 652 includes reconstructing TC(k,n) from NZD(k,n)
and I(k,n).

Stage 653 includes merging TC(k,n) and ITC(k+1,n) to
provide TC(k+1,n).

Stage 650 may also include stages 654, 655 and 656.

Stage 654 includes extracting a motion vector per each
transform coefficient group.

Stage 655 includes determining if all motion vectors asso-
ciated with a set of transform coefficient groups are the same.

Stage 656 includes generating, based on the determination
of stage 655, a single motion vector indicator (SMV(k+1,n))
indicating whether all motion vectors associated with TC(k+
1,n) are the same.

Stage 650 is followed by stage 660 of determining whether
to complete the decoding process for TC(k+1,n) (and jump to
stage 662) or to continue the decoding process of TC(k+1,n)
by processing higher quality layers (and jump to stage 670).

Stage 662 includes completing the decoding process for
TC(k+1,n) and jumping to stage 685.

Stage 670 includes generating a (k+1)’th layer n’th set
non-zero data structure (NZD(k+1,n)) and (k+1)’th layer n’th
set non-zero identifiers (I(k+1,n)). NZD(k+1,n) includes only
non-zero (k+1)’th layer n’th set transform coefficient groups
and does not include zero value (k+1)’th layer n’th set trans-
form coefficient groups. TC(k+1,n) is associated with a (k+1)
’th quality level. I(k+1,n) are indicative of non-zero (k+1)’th
layer n’th set transform coefficient groups.

Stage 670 is followed by stage 680 of writing to the
memory unit NZD(k+1,n) and I(k+1,n).

The writing of NZD(k+1,n) to the memory may be condi-
tioned—NZD(k+1,n) may be written to the memory unit only
if it includes at least one non-zero (k+1)’th layer n’th set
transform coefficient group.

Stage 680 may include stage 681 of writing to the memory
unit the single motion vector identifier SMV(k,n) and at least
one motion vector (MV(k,n)) per TC(k,n)—according to the
determination of stage 655. Stage 681 may include writing up
to a single motion vector per TC(k,n) to a single motion vector
data structure S and writing multiple motion vectors of TC(1,
n)—if such exist—to a multiple motion vector data structure
MU. The single motion vector indicator SMV(1,n) indicates
whether to fetch a motion vectors from S or MU.

Stage 680 is followed by stage 685 of determining whether
to process other subsets of the (k+1)’th layer video stream—
other encoded macroblocks of the (k+1)’th layer. If the
answer is yes stage 685 is followed by increasing n and
jumping to stage 641. Else—stage 685 is followed by stage
687 of determining whether to increase the quality of the
video stream. If the answer is no then the method ends.
Else—stage 687 is followed by stage 688 of increasing k
(k=k+1). Stage 688 is followed by stage 640.

US 9,143,793 B2

9

Method 600 can process any of the data structures illus-
trated in FIG. 2. For example, the first non-zero data structure
may include an ordered and continuous sequence of non-zero
first transform coefficient groups.

Either one of stage 610, 630, 640 and 670 may include
executing multiple bursts that have a burst size. A burst may
include exchanging multiple bits of information by the data
transfer unit. The non-zero transform coefficient groups of
each non-zero data structure may be are aligned to burst size.
Thus, the burst size may be a multiple integer of the size of a
non-zero coefficient group.

A decoding of a certain enhancement layer can be done
regardless of information of one or more previous enhance-
ment layers. A “skip previous layer” indicator can be pro-

10

vided and this indicator can indicate to ignore information of
a previous enhancement layer. In this case the certain
enhancement layer will be processed in the same manner as
the first layer. Referring to the example set fourth in FIG.
4—stage 550 will include processing, by a decoder the (k+1)
’th layer information to provide (k+1)’th transform coeffi-
cient groups.

Method 600 will be further explained using the following
assumptions: (a) method 600 is executed one encoded mac-
roblock after the other, (b) all the encoded macroblocks of one
layer are processed before processing encoded macroblocks
of another layer, (c) the processing includes processing a
three layers, each layer includes N macroblocks, (d) method
600 includes stage 640 and not stages 641-646.

TABLE 2

610
615
620
625
630
635
610
615
620
625
630
635

Fetch EM(1,1),K=1,n=1.

Processing EM(1, 1) to provide TC(1, 1), MV(1, 1) and SMV(1, 1)

Determining to continue the decoding

Generating NZD(1, 1) and I(1, 1)

Writing SMV(1, 1), one or more of MV(1, 1), NZD(1, 1) and I(1, 1) to memory unit
Determining to process other encoded macroblocks of the first layer, n =n + 1
FetchM(1,2),K=1,n=2.

Processing M(1, 2) to provide TC(1, 2), MV(1, 2) and SMV(1, 2)

Determining to continue the decoding

Generating NZD(1, 2) and I(1, 2)

Writing SMV(1, 2) one or more of MV(1, 2), NZD(1, 2) and I(1, 2) to memory unit
Determining to process other encoded macroblocks of the first layer, n =n + 1

REPEATING STAGES 610-630 untiln =N

640
650
660
670
680

Fetch EM(1,N),K=1,n=N.

Processing M(1, N) to provide TC(1, N), MV(1, N) and SMV(1, N)
Determining to continue the decoding

Generating NZD(1, N) and I(1, N)

Writing SMV(1, N), one or more of MV(1, N), NZD(1, N) and I(1, N) to

memory unit

685
640
650
660
670
680
685
640
650
660
670
680
685

Determining to process other encoded macroblocks of the second layer,

Fetch EM(2,1),k=2,n=1.

Processing M(2, 1) to provide TC(2, 1), MV(2, 1) and SMV(2, 1)

Determining to continue the decoding

Generating NZD(2, 1) and I(2, 1)

Writing SMV(2, 1), one or more of MV(2, 1), NZD(2, 1) and I(2, 1) to memory unit
Determining to process other encoded macroblocks of the first layer, n =n + 1

Fetch EM(2, 2),k=2,n=2.

Processing M(2, 2) to provide TC(2, 2), MV(2, 1) and SMV(2, 2)

Determining to continue the decoding

Generating NZD(2, 2) and I(2, 2)

Writing SMV(2, 2), one or more of MV(2, 2), NZD(2, 2) and I(2, 2) to memory unit
Determining to process other encoded macroblocks of the first layer, n =n + 1

REPEATING STAGES 610-630 untiln =N

640
650
660
670
680

Fetch EM(2,N),K=1,n=N.

Processing M(2, N) to provide TC(2, N), MV(2, N) and SMV(2, N)
Determining to continue the decoding

Generating NZD(2, N) and I(2, N)

Writing SMV(2, N), one or more of MV(2, N), NZD(2, N) and I(2, N) to

memory unit

685
640
650
660
662
685
640
650
660
662
685

Determining to process other encoded macroblocks of the third layer.
FetchM(3,1),K=3,n=1.

Processing M(3, 1) to provide TC(3, 1), MV(3, 1) and SMV(3, 1)
Determining to complete the decoding for TC(3, 1)

Completing the decoding process for TC(3, 1)

Determining to process other encoded macroblocks of the third layer,n=n+ 1
Fetch EM(3, 2),k=3,n=2.

Processing M(3, 2) to provide TC(3, 2), MV(3, 2) and SMV(3, 2)
Determining to complete the decoding for TC(3, 2)

Completing the decoding process for TC(3, 2)

Determining to process other encoded macroblocks of the third layer,n=n+ 1

REPEATING STAGES 610-635 untiln =N

640
650
660
662

Fetch M(3,N),k=3,n=N.

Processing M(3, N) to provide TC(3, N), MV(3, N) and SMV(3, N)
Determining to complete the decoding for TC(3, N)

Completing the decoding process for TC(3, N)

US 9,143,793 B2

11

Method 600, as illustrated above, includes a merger pro-
cess (of TCI(k+1,n) and TC(k,n)) for each fetched encoded
macroblock—and for each layer. It is noted that the merger
may be executed one per multiple layers and even once per the
entire decoding process.

If, for example, a merger is executed once per the entire
decoding process then stage 653 will not include said merger,
stage 662 will include completing the decoding process for
TCI(k+1,n)—whereas the completion may include the
merger of TCI(1,n) . . . TCI(N,n), and stage 670 will include
generating NZD(k+1,n) and I(k+1,n) that represent TCI(k+
1,n).

FIG. 5 schematically shows an example of an embodiment
of video processing system 800.

Video processing system 800 may include memory unit
810, decoder 820, data transfer unit 830 and controller 840.
The controller 840 may manage memory unit 810, decoder
820 and data transfer unit 830 by sending instructions and
timing signals to these modules.

The video processing system 600 is illustrated as having an
input/output port 890. This port may be connected to a display
for displaying a decoded video stream, to a memory unit, may
be connected to a RF front end and the like.

The decoder 820 includes: (i) a second transform coeffi-
cient groups generator 821 for processing the second layer
information and the first non-zero data structure to provide
second transform coefficient groups; (ii) a second non-zero
data structure generator 822 for generating a second non-zero
data structure that comprises only non-zero second transform
coefficient groups; and (iii) a second non-zero indicators gen-
erator 823 for generating second non-zero indicators that are
indicative of non-zero transform coefficient groups.

FIG. 5 illustrates various data structures that can be stored
in memory unit 810. For example, these data structure include
S 901, MU 902, first layer 10, second layer 20, third layer 30,
k’th layer 40 (assuming that k is bigger than three), TC(n,k)
188, I(n,k) 288, NZD(n,k) 388, TCI(n,k) 488, I1(n k) 588,
SMV(n,k) 910, IGNORE(k+1) 888, and EMV(n k) 920.

Video processing system 800 may execute method 600.
The following table illustrates stages of method 600 that are
executed by each decoder 820, data transfer unit 830 and
controller 840. Memory unit 810 stores first layer informa-
tion, one or more enhancement layer information, multiple
non-zero data structures, multiple non-zero identifiers,
motion vectors and the like.

Itis noted that decoder 820 may execute at least some of the
stages that are executed by controller 840.

TABLE 3
Order
of operations Data transfer unit decoder Controller
1 610 (fetching) 610 (Setting kto 1)
2 615
3 620
4 622
5 625
6 627
7 628
8 630
9 635
10 640, 641, 644, 642, 643, 645
646
11 650
12 660
13 670
14 675
15 680
16 685
17 688

10

15

20

25

30

35

40

45

50

55

60

65

12

Accordingly, data transfer unit 830 may be configured to:
(1) fetch first layer information from a memory unit; (ii) write
to the memory unit the first layer n’th set non-zero data
structure and the first layer n’th set non-zero identifiers; (iii)
write to the memory unit the single motion vector identifier
SMV(1,n) and at least one motion vector (MV(1,n)) per TC(1,
n)—according to SMV(1,n); (iv) write up to a single motion
vector per TC(1,n) to a single motion vector data structure S
and write multiple motion vectors of TC(1,n)—if such
exist—to a multiple motion vector data structure; (v) retrieve,
from the memory unit, a k’th layer n’th set non-zero data
structure, a k’th layer n’th set non-zero identifiers and (k+1)
’th layer information such as (k+1)’th layer n’th encoded
macroblock; (vi) write to the memory unit NZD(k+1,n) and
I(k+1,n); (vii) write to the memory unit the single motion
vector identifier SMV(k,n) and at least one motion vector
(MV(k,n)) per TC(k,n)—according to SMV(k,n); (viii) write
up to a single motion vector per TC(k,n) to a single motion
vector data structure S; (ix) write multiple motion vectors of
TC(k,n)—if such exist—to a multiple motion vector data
structure MU; (x) retrieve IGNORE(k+1), (xi) fetch EM(k+
1,n) and I(k,n); and (xii) fetch NZD(k,n).

Decoder 820 may also include: (i) first layer processor
820(1) arranged to process a first layer n’th encoded macrob-
lock to provide first layer n’th set of transform coefficient
groups TC(1,n); (i1) motion vector extractor 820(2) arranged
to extract a motion vector per each transform coefficient
group; (iii) decoder controller 820(3) arranged to determine if
all motion vectors associated with a set of transform coeffi-
cient groups are the same; (iv) single motion vector indicator
generator 820(4) arranged to generate, based on the determi-
nation a single motion vector indicator (SMV(1,n)) indicating
whether all motion vectors associated with TC(1,n) are the
same; (iv) decoding process completion module 820(4)
arranged to complete the decoding process for TC(1,n); (v)
first layer non-zero data structure generator 820(5) arranged
to generate a first layer n’th set non-zero data structure NZD
(1,1) (vi) first layer non-zero identifier generator 820(6)
arranged to generate first layer n’th set non-zero identifiers
1(1,1); (vii) transfor coefficient group generator 820(7)
arranged to process the k’th layer n’th set non-zero data
structure (NZD(k,n) the k’th layer n’th set non-zero identifi-
ers (I(k,n)) and the (k+1)’th layer n’th encoded macroblock
(M(k+1,n)) to provide (k+1)’th layer n’th set transform coef-
ficient groups TC(k+1,n); (viii) intermediate set generator
820(8) arranged to process M(k+1,n) to provide (k+1)’th
layer n’th set intermediate transform coefficient groups ITC
(k+1,n); (ix) reconstruction module 820(9) arranged to recon-
struct TC(k,n) from NZD(k,n) and I(k,n); and (xi) merge unit
820(10) arranged to merge TC(k,n) and ITC(k+1,n) to pro-
vide TC(k+1,n).

Accordingly, controller 840 may be configured to: (i) set a
layer index k to 1 (k=1), set an encoded macroblock index n
to 1 (n=1); (ii) determine whether to complete the decoding
process for TC(1,n) or to continue the decoding process by
processing higher quality layers’ (iii) determine whether to
process other subsets of the first layer video stream or to
continue the decoding process by processing enhancement
layer information; (iv) determine whether to process other
subsets of the (k+1)’th layer video stream—other encoded
macroblocks of the (k+1)' the layer or to continue the decod-
ing process by processing one or more additional enhance-
ment layer information; (v) increase index k (k=k+1).

Video processing system 800 may execute method 600 in a
serial manner—one encoded macroblock after the other, and
one layer after the other, but may execute method 600 in a

US 9,143,793 B2

13

pipelined or parallel manner—thus including multiple buff-
ers/registers/calculation units for executing method 600.

It is noted that a fixed memory space may be allocated for
each non-zero data structure although a variable length
memory space may be allocated per each non-zero data struc-
ture. Various data structures (such as S 901, EU 902 and
macroblock type information) may be grouped together.

Non-zero data structures and non zero identifiers may be
written to a double buffer in which updated data structures
may replace older data structures.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that vari-
ous modifications and changes may be made therein without
departing from the broader spirit and scope of the invention as
set forth in the appended claims.

Those skilled in the art will recognize that the boundaries
between logic blocks are merely illustrative and that alterna-
tive embodiments may merge logic blocks or circuit elements
or impose an alternate decomposition of functionality upon
various logic blocks or circuit elements. Thus, it is to be
understood that the architectures depicted herein are merely
exemplary, and that in fact many other architectures can be
implemented which achieve the same functionality.

Any arrangement of components to achieve the same func-
tionality is effectively “associated” such that the desired func-
tionality is achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as
“associated with” each other such that the desired function-
ality is achieved, irrespective of architectures or intermedial
components. Likewise, any two components so associated
can also be viewed as being “operably connected,” or “oper-
ably coupled,” to each other to achieve the desired function-
ality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into a
single operation, a single operation may be distributed in
additional operations and operations may be executed at least
partially overlapping in time. Moreover, alternative embodi-
ments may include multiple instances of a particular opera-
tion, and the order of operations may be altered in various
other embodiments.

Also for example, the examples, or portions thereof, may
implemented as soft or code representations of physical cir-
cuitry or of logical representations convertible into physical
circuitry, such as in a hardware description language of any
appropriate type.

Also, the invention is not limited to physical devices or
units implemented in non-programmable hardware but can
also be applied in programmable devices or units able to
perform the desired device functions by operating in accor-
dance with suitable program code, such as mainframes, mini-
computers, servers, workstations, personal computers, note-
pads, personal digital assistants, electronic games,
automotive and other embedded systems, cell phones and
various other wireless devices, commonly denoted in this
application as ‘computer systems’.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

The invention may also be implemented in a computer
program for running on a computer system, at least including
code portions for performing steps of a method according to
the invention when run on a programmable apparatus, such as

10

15

20

25

30

35

40

45

50

55

60

65

14

a computer system or enabling a programmable apparatus to
perform functions of a device or system according to the
invention.

A computer program is a list of instructions such as a
particular application program and/or an operating system.
The computer program may for instance include one or more
of: a subroutine, a function, a procedure, an object method, an
objectimplementation, an executable application, an applet, a
servlet, a source code, an object code, a shared library/dy-
namic load library and/or other sequence of instructions
designed for execution on a computer system.

The computer program may be stored internally on a non-
transitory computer readable medium. The computer read-
able medium may be a part of a computer program product.
All or some of the computer program may be provided on
non-transitory computer readable media permanently,
removably or remotely coupled to an information processing
system. The non-transitory computer readable media may be
included in a computer program product and may include, for
example and without limitation, any number of the following:
magnetic storage media including disk and tape storage
media; optical storage media such as compact disk media
(e.g., CD-ROM, CD-R, etc.) and digital video disk storage
media; nonvolatile memory storage media including semi-
conductor-based memory units such as FLASH memory,
EEPROM, EPROM, ROM; ferromagnetic digital memories;
MRAM; volatile storage media including registers, buffers or
caches, main memory, RAM, etc.

A computer process typically includes an executing (run-
ning) program or portion of a program, current program val-
ues and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the software that manages the shar-
ing of the resources of a computer and provides programmers
with an interface used to access those resources. An operating
system processes system data and user input, and responds by
allocating and managing tasks and internal system resources
as a service to users and programs of the system.

The computer system may for instance include at least one
processing unit, associated memory and a number of input/
output (1/O) devices. When executing the computer program,
the computer system processes information according to the
computer program and produces resultant output information
via I/O devices.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
‘comprising’ does not exclude the presence of other elements
or steps then those listed in a claim. Furthermore, the terms
“a” or “an,” as used herein, are defined as one or more than
one. Also, the use of introductory phrases such as “at least
one” and “one or more” in the claims should not be construed
to imply that the introduction of another claim element by the
indefinite articles “a” or “an” limits any particular claim
containing such introduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an.” The same
holds true for the use of definite articles. Unless stated other-
wise, terms such as “first” and “second” are used to arbitrarily
distinguish between the elements such terms describe. Thus,
these terms are not necessarily intended to indicate temporal
or other prioritization of such elements The mere fact that
certain measures are recited in mutually different claims does
not indicate that a combination of these measures cannot be
used to advantage.

US 9,143,793 B2

15

The invention claimed is:

1. A video processing system, comprising:

a memory unit for storing data structures that represent
transform coefficient groups of layers of macroblocks
and for storing layer information associated with quality
levels of macroblocks, wherein the transform coefficient
groups are transform, coefficient groups of H.264 SVC
video protocols;

a decoder, connected to the memory unit, comprising:

a non-zero data structure generator for generating non-
zero data structures that comprise only non-zero
transform coefficient groups of a plurality of the trans-
form coefficient groups, wherein each of the trans-
form coefficient groups contains a plurality of trans-
form coefficients, wherein a non-zero transform
coefficient group has at least one non-zero coefficient
and wherein a non-zero data structure is obtained
from a first plurality of transform coefficient groups
by removing transform coefficient groups which do
not contain at least one non-zero coefficient from the
first plurality of transform coefficient groups, and
wherein arrangement of transform coefficients into
transform coefficient groups is determined in advance
of receipt of the transform coefficient groups by the
decoder; and

a non-zero indicators generator for generating non-zero
indicators that are indicative of positions of non-zero
transform coefficient groups of the non-zero data
structure among the first plurality of transform coef-
ficient groups; and

a data transfer unit, connected to the memory unit and to the
decoder, for transferring the non-zero data structures
and layer information to the decoder; and for writing the
non-zero indicators and the non-zero data structures to
the memory unit, wherein the decoder is for receiving
from the memory unit a first non-zero data structure and
first non-zero indicators of a first layer macroblock of a
first quality level, for reconstructing first transform coef-
ficient groups of the first layer macroblock from the first
non-zero data structure and the first non-zero indicators,
for receiving from the memory unit second layer infor-
mation associated with a second quality level higher
than the first quality level, for processing the second
layer information and the first non-zero data structure to
provide second transform coefficient groups, for gener-
ating a second non-zero data structure that comprises
only non-zero second transform coefficient groups of
the second transform coefficient groups, and for gener-
ating second non-zero indicators that are indicative of
positions of non-zero transform coefficient groups
among the first transform coefficient groups and the
second transform coefficient groups, wherein the
memory unit is to store the second non-zero indicators.

2. The video processing system according to claim 1,
wherein the second non-zero data structure comprises an
ordered and continuous sequence of non-zero second trans-
form coefficient groups.

3. The video processing system according to claim 1,
wherein the data transfer unit is configured to write the second
non-zero data structure in multiple bursts that have a burst
size; wherein non-zero second transform coefficient groups
of'the second non-zero data structure are aligned to the burst
size.

4. The video processing system according to claim 1,
wherein the data transfer unit is configured to write the second
non-zero data structure to the memory unit only when the

10

15

20

25

30

35

40

45

50

55

60

65

16

second non zero data structure comprises at least one second
non zero transfer coefficient group.

5. The video processing system according to claim 1,
wherein the decoder is configured to provide a decoded video
stream based on the first and second transfer coefficient
groups.

6. The video processing system according to claim 1, con-
figured to process each set out of multiple sets of transfer
coefficient groups of a video stream; wherein each set of
transfer coefficient groups is associated with multiple motion
vectors; and wherein the data transfer unit is configured to
write to the memory unit only a single motion vector for a set
of transfer coefficient groups if all the motion vectors associ-
ated with the set of the transfer coefficient groups are equal to
each other.

7. The video processing system according to claim 1,
wherein the data transfer unit is further configured to write the
second non-zero data structure to the memory unit.

8. The video processing system of claim 1, wherein the
non-zero first transform coefficient groups are non-zero
transform coefficient groups from a set of transform coeffi-
cient groups including a 4x4 set of Luma transform coeffi-
cient groups and a 4x2 set of Chroma transform coefficient
groups, wherein each of the first transform coefficient groups
each consists of 4 transform coefficients.

9. The video processing system of claim 1, wherein the
second non-zero indicators are indicative of both non-zero
first transform coefficient groups and non-zero second trans-
form coefficient groups.

10. The video processing system of claim 1, wherein:

first transform coefficient groups comprise first transform

coefficient groups of a first layer macroblock;

the second layer information includes at least one encoded

second-layer macroblock corresponding to the location
of the first layer macroblock within an image; and

the second transform coefficient groups comprise second

transform coefficient groups of a macroblock with a
quality level higher than the first layer quality level,
wherein processing the second layer information and the
first non-zero data structure includes merging the non-
zero first transform coefficient groups and coefficient
groups of the second layer information to provide the
second transform coefficient groups.

11. A method for processing video, the method compris-
ing:

receiving first transform coefficient groups of H.264 SVC

video protocols by a video decoder, wherein the first
transform coefficient groups are transform coefficient
groups of a first layer macroblock associated with a first
quality level, wherein each of the first transform coeffi-
cient groups contains a plurality of coefficients, and
wherein arrangement of transform coefficients into
transform coefficient groups is determined in advance of
the receiving;

generating by the video decoder a first non-zero data struc-

ture that comprises only non-zero first transform coeffi-
cient groups of the first transform coefficient groups,
wherein each of the transform coefficient groups con-
tains a plurality of transform coefficients, wherein a
non-zero transform coefficient group has at least one
non-zero coefficient, wherein the first non-zero data
structure is obtained from the first transform coefficient
groups by removing transform coefficient groups which
do not contain at least one non-zero coefficient from the
first transform coefficient groups, and wherein arrange-

US 9,143,793 B2

17

ment of transform coefficients into transform coefficient
groups is determined in advance of receipt of the trans-
form, coefficient groups;

generating by the video decoder first non-zero indicators
that are indicative of positions of non-zero transform
coefficient groups among the first transform coefficient
groups;

writing by the video decoder the first non-zero data struc-
ture and the first non-zero indicators to a memory unit;

retrieving, by the video decoder from the memory unit, the
first non-zero data structure and the first non-zero indi-
cators;

reconstructing the first transform coefficient groups from
the first non-zero data structure and the first non-zero
indicators;

receiving second layer information associated with a sec-
ond quality level higher than the first quality level;

processing the second layer information and the first non-
zero data structure to provide second transform coeffi-
cient groups;

generating a second non-zero data structure that comprises
only non-zero second transform coefficient groups of
the second transform coefficient groups;

generating second non-zero indicators that are indicative of
positions of non-zero transform coefficient groups
among the first transform coefficient the second trans-
form coefficient groups; and

storing the second non-zero indicators.

12. The method according to claim 11, comprising:

repeating the stages of retrieving layer information, pro-
cessing the layer information and non-zero data struc-
tures, and generating non-zero indicators for each set out
of multiple sets of transform coefficient groups of a
video stream; wherein each set of transform coefficient
groups is associated with multiple motion vectors; and

writing to the memory unit only a single motion vector per
set if all motion vectors associated with the set are equal
to each other.

13. The method of claim 11, further comprising:

retrieving, from the memory unit, second layer information
associated with a second quality level higher than the
first quality level;

processing, by the video decoder, the second layer infor-
mation and the first non-zero data structure to provide
second transform coefficient groups of a macroblock
associated with the second quality level;

generating, by the video decoder, a second non-zero data
structure that comprises only non-zero second transform
coefficient groups;

generating second non-zero indicators that are indicative of
positions of non-zero transform coefficient groups
among the first transform coefficient groups and the
second transform coefficient groups; and

writing to the memory unit the second non-zero indicators.

14. A computer program product that comprises a non-

transitory computer readable medium that stores instructions
for:

receiving first transform coefficient groups of H.264 SVC
video protocols by a video decoder, wherein the first
transform coefficient groups are transform coefficient
groups of a first layer macroblock associated with a first
quality level, wherein each of the first transform coeffi-
cient groups contains a plurality of coefficients, and
wherein arrangement of transform coefficients into
transform coefficient groups is determined in advance of
the receiving;

20

30

40

45

55

60

18

generating by the video decoder a first non-zero data struc-
ture that comprises only non-zero first transform coeffi-
cient groups of the first transform coefficient groups,
wherein each of the transform coefficient groups con-
tains a plurality of transform coefficients, wherein a
non-zero transform coefficient group has at least one
non-zero coefficient, wherein the first non-zero data
structure is obtained from the first transform coefficient
groups by removing transform coefficient groups which
do not contain at least one non-zero coefficient from the
first transform coefficient groups, and wherein arrange-
ment of transform coefficients into transform coefficient
groups is determined in advance of receipt of the trans-
form coefficient groups;

generating by the video decoder first non-zero indicators

that are indicative of positions of non-zero transform
coefficient groups among the first transform coefficient
groups;
writing by the video decoder the first non-zero data struc-
ture and first non-zero indicators to a memory unit;

retrieving, by the video decoder from the memory unit, the
first non-zero data structure and the first non-zero indi-
cators;

reconstructing the first transform coefficient groups from

the first non-zero data structure and the first non-zero
indicators;
receiving second layer information associated with a sec-
ond quality level higher than the first quality level;

processing the second layer information and the first non-
zero data structure to provide second transform coeffi-
cient groups;

generating a second non-zero data structure that comprises

only non-zero second transform coefficient groups of
the second transform coefficient groups;

generating second non-zero indicators that are indicative of

positions of non-zero transform coefficient groups

among the first transform coefficient groups and the

second transform coefficient groups, wherein the second

non-zero data structure is associated with a second qual-

ity level that is higher than the first quality level; and
storing the second non-zero indicators.

15. The computer program product according to claim 14,
wherein the non-transitory computer readable medium stores
instructions for generating the second non-zero data structure
if a target quality level of the video stream once decoded
exceeds the second quality level.

16. The computer program product according to claim 14,
wherein the non-transitory computer readable medium stores
instructions for:

repeating the stages of retrieving layer information, pro-

cessing, and generating a non-zero data structure and a
non-zero indicator for each set out of multiple sets of
transform coeflicient groups of a video stream;

writing to the memory unit a first motion vector data struc-

ture that comprises up to a single motion vector per set;
and

preventing from writing to the memory unit additional

motion vectors for a set if all motion vectors associated
with the set are equal to each other.

17. The computer program product according to claim 14,
wherein the second non-zero indicators form a bit map.

18. The computer program product of claim 17, wherein:

bits of the bit map correspond to transform coefficient

groups;

a first bit value of a bit indicates a transform coefficient

group corresponding to the bit is a non-zero transform
coefficient group; and

US 9,143,793 B2

19

a second bit value of a bit indicates the transform coeffi-
cient group corresponding to the bit is an all zero trans-
form coefficient group.

19. The computer program product of claim 18 wherein the
correspondence between the bits and the transform coeffi-
cient groups is defined by a scan pattern of the transform
coefficient groups whereby the nth bit of the bit map corre-
sponds to the nth transform coefficient group of the transform
coefficient groups in an order of the scan pattern.

#* #* #* #* #*

10

20

